All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

VERY TRUE ON CBA FUZZY LOGIC

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10215576" target="_blank" >RIV/61989592:15310/10:10215576 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    VERY TRUE ON CBA FUZZY LOGIC

  • Original language description

    CBA logic was introduced as a non-associative generalization of the Lukasiewicz many-valued propositional logic. Its algebraic semantic is just the variety of commutative basic algebras. Petr Hájek introduced vt-operators as models for the "very true" connective on fuzzy logics. The aim of the paper is to show possibilities of using vt-operators on commutative basic algebras, especially we show that CBA logic endowed with very true connective is still fuzzy.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Mathematica Slovaca

  • ISSN

    0139-9918

  • e-ISSN

  • Volume of the periodical

    60

  • Issue of the periodical within the volume

    4

  • Country of publishing house

    SK - SLOVAKIA

  • Number of pages

    12

  • Pages from-to

  • UT code for WoS article

    000279698300002

  • EID of the result in the Scopus database