All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

ON CONCIRCULAR AND TORSE-FORMING VECTOR FIELDS ON COMPACT MANIFOLDS

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10215947" target="_blank" >RIV/61989592:15310/10:10215947 - isvavai.cz</a>

  • Result on the web

  • DOI - Digital Object Identifier

Alternative languages

  • Result language

    angličtina

  • Original language name

    ON CONCIRCULAR AND TORSE-FORMING VECTOR FIELDS ON COMPACT MANIFOLDS

  • Original language description

    In this paper we modify the theorem by E. Hopf and found results and conditions, on which concircular, convergent and torse-forming vector fields exist on (pseudo-) Riemannian spaces. These results are applied for conformal, geodesic and holomorphicallyprojective mappings of special compact spaces without boundary.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2010

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Acta Mathematica Academiae Paedagogicae Nyíregyháziensis

  • ISSN

    0866-0182

  • e-ISSN

  • Volume of the periodical

    26

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    7

  • Pages from-to

    329-335

  • UT code for WoS article

  • EID of the result in the Scopus database