Factorizing three-way binary data with triadic formal concepts
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F10%3A10216449" target="_blank" >RIV/61989592:15310/10:10216449 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Factorizing three-way binary data with triadic formal concepts
Original language description
We present a problem of factor analysis of three-way binary data. Such data is described by a 3-dimensional binary matrix I, describing a relationship between objects, attributes, and conditions. The aim is to decompose I into three binary matrices, an object-factor matrix A, an attribute-factor matrix B, and a condition-factor matrix C, with a small number of factors. The difference from the various decompositionbased methods of analysis of three-way data consists in the composition operator and the constraint on A, B, and C to be binary. We present a theoretical analysis of the decompositions and show that optimal factors for such decompositions are provided by triadic concepts developed in formal concept analysis. Moreover, we present an illustrative example, propose a greedy algorithm for computing the decompositions. EN KLICOVA SLOVA: factor analysis, binary data, three-way data CZ TITUL: Faktorizace tri-cestnych dat pomoci triadickych formalnich konceptu.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP202%2F10%2F0262" target="_blank" >GAP202/10/0262: Decompositions of matrices with binary and ordinal data: theory, algorithms, and complexity</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2010
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Lecture Notes in Artificial Intelligence
ISSN
0302-9743
e-ISSN
—
Volume of the periodical
6276
Issue of the periodical within the volume
1
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
—
UT code for WoS article
—
EID of the result in the Scopus database
—