On the equivalence between orthogonal regression and linear model with type-II constraints
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A10224881" target="_blank" >RIV/61989592:15310/11:10224881 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On the equivalence between orthogonal regression and linear model with type-II constraints
Original language description
Orthogonal regression, also known as the total least squares method, regression with errors-in variables or as a calibration problem, analyzes linear relationship between variables. Comparing to the standard regression, both dependent and explanatory variables account for measurement errors. Through this paper we shortly discuss the orthogonal least squares, the least squares and the maximum likelihood methods for estimation of the orthogonal regression line. We also show that all mentioned approaches lead to the same estimates in a special case.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Acta Universitatis Palackianae Olomucensis, Facultas Rerum Naturalium, Mathematica
ISSN
0231-9721
e-ISSN
—
Volume of the periodical
50
Issue of the periodical within the volume
2
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
9
Pages from-to
19-27
UT code for WoS article
—
EID of the result in the Scopus database
—