All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Landslide susceptibility assessment using SVM machine learning algorithm

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A10225214" target="_blank" >RIV/61989592:15310/11:10225214 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1016/j.enggeo.2011.09.006" target="_blank" >http://dx.doi.org/10.1016/j.enggeo.2011.09.006</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.enggeo.2011.09.006" target="_blank" >10.1016/j.enggeo.2011.09.006</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Landslide susceptibility assessment using SVM machine learning algorithm

  • Original language description

    The main objective of this research is to examine the possibility of automating the process of landslide susceptibility mapping by using machine learning techniques. The desired automated procedure assumes that after the initial acquisition of the necessary spatial data, an expert is presented with a (possibly small) representative region of the whole terrain. Such a scenario assumes a supervised learning approach in which the expert performs mapping in the representative region and the map subsequentlyproduced is used for training the machine which would perform the mapping task in the rest of the area.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    DE - Earth magnetism, geodesy, geography

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Methods of Artificial Inteligence in GIS</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Engineering Geology

  • ISSN

    0013-7952

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    10

  • Pages from-to

    225-234

  • UT code for WoS article

    000297182200008

  • EID of the result in the Scopus database