Landslide susceptibility assessment using SVM machine learning algorithm
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A10225214" target="_blank" >RIV/61989592:15310/11:10225214 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1016/j.enggeo.2011.09.006" target="_blank" >http://dx.doi.org/10.1016/j.enggeo.2011.09.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.enggeo.2011.09.006" target="_blank" >10.1016/j.enggeo.2011.09.006</a>
Alternative languages
Result language
angličtina
Original language name
Landslide susceptibility assessment using SVM machine learning algorithm
Original language description
The main objective of this research is to examine the possibility of automating the process of landslide susceptibility mapping by using machine learning techniques. The desired automated procedure assumes that after the initial acquisition of the necessary spatial data, an expert is presented with a (possibly small) representative region of the whole terrain. Such a scenario assumes a supervised learning approach in which the expert performs mapping in the representative region and the map subsequentlyproduced is used for training the machine which would perform the mapping task in the rest of the area.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
DE - Earth magnetism, geodesy, geography
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA205%2F09%2F1079" target="_blank" >GA205/09/1079: Methods of Artificial Inteligence in GIS</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Engineering Geology
ISSN
0013-7952
e-ISSN
—
Volume of the periodical
123
Issue of the periodical within the volume
3
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
10
Pages from-to
225-234
UT code for WoS article
000297182200008
EID of the result in the Scopus database
—