Quasi-splitting subspaces and Foulis-Randall subspaces
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A33116597" target="_blank" >RIV/61989592:15310/11:33116597 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1063/1.3668124" target="_blank" >http://dx.doi.org/10.1063/1.3668124</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1063/1.3668124" target="_blank" >10.1063/1.3668124</a>
Alternative languages
Result language
angličtina
Original language name
Quasi-splitting subspaces and Foulis-Randall subspaces
Original language description
For a pre-Hilbert space S, let F(S) denote the orthogonally closed subspaces, Eq(S) the quasi-splitting subspaces, E(S) the splitting subspaces, D(S) the Foulis-Randall subspaces, and R(S) the maximal Foulis-Randall subspaces, of S. It was an open problem whether the equalities D(S) = F(S) and E(S) = R(S) hold in general [Cattaneo, G. and Marino, G., "Spectral decomposition of pre-Hilbert spaces as regard to suitable classes of normal closed operators," Boll. Unione Mat. Ital. 6 1-B, 451-466 (1982); Cattaneo, G., Franco, G., and Marino, G., "Ordering of families of subspaces of pre-Hilbert spaces and Dacey pre-Hilbert spaces," Boll. Unione Mat. Ital. 71-B, 167-183 (1987); Dvurečenskij, A., Gleason's Theorem and Its Applications (Kluwer, Dordrecht, 1992), p. 243.]. We prove that the first equality is true and exhibit a pre-Hilbert space S for which the second equality fails.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
Z - Vyzkumny zamer (s odkazem do CEZ)
Others
Publication year
2011
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Physics
ISSN
0022-2488
e-ISSN
—
Volume of the periodical
52
Issue of the periodical within the volume
12
Country of publishing house
US - UNITED STATES
Number of pages
7
Pages from-to
123508-7
UT code for WoS article
000298641000026
EID of the result in the Scopus database
—