All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Quasi-splitting subspaces and Foulis-Randall subspaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F11%3A33116597" target="_blank" >RIV/61989592:15310/11:33116597 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1063/1.3668124" target="_blank" >http://dx.doi.org/10.1063/1.3668124</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1063/1.3668124" target="_blank" >10.1063/1.3668124</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Quasi-splitting subspaces and Foulis-Randall subspaces

  • Original language description

    For a pre-Hilbert space S, let F(S) denote the orthogonally closed subspaces, Eq(S) the quasi-splitting subspaces, E(S) the splitting subspaces, D(S) the Foulis-Randall subspaces, and R(S) the maximal Foulis-Randall subspaces, of S. It was an open problem whether the equalities D(S) = F(S) and E(S) = R(S) hold in general [Cattaneo, G. and Marino, G., "Spectral decomposition of pre-Hilbert spaces as regard to suitable classes of normal closed operators," Boll. Unione Mat. Ital. 6 1-B, 451-466 (1982); Cattaneo, G., Franco, G., and Marino, G., "Ordering of families of subspaces of pre-Hilbert spaces and Dacey pre-Hilbert spaces," Boll. Unione Mat. Ital. 71-B, 167-183 (1987); Dvurečenskij, A., Gleason's Theorem and Its Applications (Kluwer, Dordrecht, 1992), p. 243.]. We prove that the first equality is true and exhibit a pre-Hilbert space S for which the second equality fails.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BA - General mathematics

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    Z - Vyzkumny zamer (s odkazem do CEZ)

Others

  • Publication year

    2011

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Physics

  • ISSN

    0022-2488

  • e-ISSN

  • Volume of the periodical

    52

  • Issue of the periodical within the volume

    12

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    7

  • Pages from-to

    123508-7

  • UT code for WoS article

    000298641000026

  • EID of the result in the Scopus database