All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM)

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33140015" target="_blank" >RIV/61989592:15310/12:33140015 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1111/j.1365-2699.2011.02589.x" target="_blank" >http://dx.doi.org/10.1111/j.1365-2699.2011.02589.x</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1111/j.1365-2699.2011.02589.x" target="_blank" >10.1111/j.1365-2699.2011.02589.x</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Accounting for multi-scale spatial autocorrelation improves performance of invasive species distribution modelling (iSDM)

  • Original language description

    Aim Analyses of species distributions are complicated by various origins of spatial autocorrelation (SAC) in biogeographical data. SAC may be particularly important for invasive species distribution models (iSDMs) because biological invasions are strongly influenced by dispersal and colonization processes that typically create highly structured distribution patterns. We examined the efficacy of using a multi-scale framework to account for different origins of SAC and compared non-spatial models with models that accounted for SAC at multiple levels. Location We modelled the spatial distribution of an invasive forest pathogen Phytophthora ramorum in western USA. Methods We applied one conventional statistical method (GLM) and one nonparametric technique(Maxent) to a large dataset on P. ramorum occurrence (n = 3787) to develop four types of models that included environmental variables that either ignored spatial context or incorporated it at a broad scale using trend surface analysis, a

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    EH - Ecology - communities

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2012

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Biogeography

  • ISSN

    0305-0270

  • e-ISSN

  • Volume of the periodical

    39

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    14

  • Pages from-to

    42-55

  • UT code for WoS article

    000298058200005

  • EID of the result in the Scopus database