A non-associative generalization of effect algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F12%3A33141097" target="_blank" >RIV/61989592:15310/12:33141097 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/s00500-012-0844-2" target="_blank" >http://dx.doi.org/10.1007/s00500-012-0844-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-012-0844-2" target="_blank" >10.1007/s00500-012-0844-2</a>
Alternative languages
Result language
angličtina
Original language name
A non-associative generalization of effect algebras
Original language description
Effect algebras play an important role in the logic of quantum mechanics. The aim of this paper is to drop the associativity of addition. However, some important properties of effect algebras are preserved, e.g. every so-called skew effect algebra is still a poset with an antitone involution. Skew effect algebras are fully characterized as certain bounded posets with sectionally switching involutions.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2012
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing: a fusion of foundations, methodologies and applications
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
16
Issue of the periodical within the volume
8
Country of publishing house
DE - GERMANY
Number of pages
4
Pages from-to
1411-1414
UT code for WoS article
000306354600008
EID of the result in the Scopus database
—