Dimension of hyperfractals
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33144425" target="_blank" >RIV/61989592:15310/13:33144425 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0960077913001938" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0960077913001938</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.chaos.2013.10.003" target="_blank" >10.1016/j.chaos.2013.10.003</a>
Alternative languages
Result language
angličtina
Original language name
Dimension of hyperfractals
Original language description
It is shown that multivalued fractals have the same address structure as the associated hyperfractals. Hyperfractals may be used to model self-similar diffusion limited aggregations, structure of urban settlements, and clusters of nanoparticles. We establish that the Hausdorff dimensions of a particular class of hyperfractals can be calculated by means of the Moran-Hutchinson formula.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Chaos, Solitons & Fractals
ISSN
0960-0779
e-ISSN
—
Volume of the periodical
57
Issue of the periodical within the volume
DEC
Country of publishing house
GB - UNITED KINGDOM
Number of pages
9
Pages from-to
146-154
UT code for WoS article
—
EID of the result in the Scopus database
—