On normals of manifolds in multidimensional projective space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145772" target="_blank" >RIV/61989592:15310/13:33145772 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
On normals of manifolds in multidimensional projective space
Original language description
In the paper the regular hyper-zones in the multi-dimensional non-Eucli-dean space are discussed. The determined bijection between the normals of the first and second kind for the hyper-zone makes it possible to construct the bundle of normals of second-kind for the hyper-zone with assistance of certain bundle of normals of first-kind and vice versa. And hence the bundle of the normals of second-kind is constructed in the third-order differential neighbourhood of the forming element for hyper-zone. Research of hyper-zones and zones in multi-dimensional spaces takes up an important place in intensively developing geometry of manifolds in view of its applications to mechanics, theoretical physics, calculus of variations, methods of optimization.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annales Mathematicae et Informaticae
ISSN
1787-5021
e-ISSN
—
Volume of the periodical
42
Issue of the periodical within the volume
DEC
Country of publishing house
HU - HUNGARY
Number of pages
6
Pages from-to
23-28
UT code for WoS article
—
EID of the result in the Scopus database
—