Tense Operators and Dynamic De Morgan algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33145903" target="_blank" >RIV/61989592:15310/13:33145903 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Tense Operators and Dynamic De Morgan algebras
Original language description
To every propositional logic satisfying double negation law is assigned a De Morgan poset E. Using of axioms for an universal quantifier, we set up axioms for the so-called tense operators G and H on E. The triple D = (E; G, H) is called a (partial) dynamic De Morgan algebra. We solve the following questions: first, if a time frame is given, how to construct tense operators G and H; second, if a dynamic De Morgan algebra is given, how to find a time frame such that its tense operators G and H can be reached by this construction.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
2013 IEEE 43rd International Symposium on Multiple-valued Logic (ISMVL 2013)
ISBN
978-1-4673-6067-8
ISSN
0195-623X
e-ISSN
—
Number of pages
6
Pages from-to
225-230
Publisher name
Institute of Electrical and Electronics Engineers
Place of publication
Toyama, Japan
Event location
Japan
Event date
May 22, 2013
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
—