Ideals and congruences of basic algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33146319" target="_blank" >RIV/61989592:15310/13:33146319 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs00500-012-0915-4" target="_blank" >http://link.springer.com/article/10.1007%2Fs00500-012-0915-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00500-012-0915-4" target="_blank" >10.1007/s00500-012-0915-4</a>
Alternative languages
Result language
angličtina
Original language name
Ideals and congruences of basic algebras
Original language description
MV-algebras as well as orthomodular lattices can be seen as a particular case of so-called ''basic algebras''. The class of basic algebras is an ideal variety. In the paper, we give an internal characterization of congruence kernels (ideals) and find a finite basis of ideal terms, with focus on monotone and effect basic algebras. We also axiomatize basic algebras that are subdirect products of linearly ordered ones.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
O - Projekt operacniho programu
Others
Publication year
2013
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Soft Computing: a fusion of foundations, methodologies and applications
ISSN
1432-7643
e-ISSN
—
Volume of the periodical
17
Issue of the periodical within the volume
3
Country of publishing house
DE - GERMANY
Number of pages
10
Pages from-to
401-410
UT code for WoS article
000314754000006
EID of the result in the Scopus database
—