All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Beyond Boolean Matrix Decompositions: Toward Factor Analysis and Dimensionality Reduction of Ordinal Data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F13%3A33147956" target="_blank" >RIV/61989592:15310/13:33147956 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1109/ICDM.2013.127" target="_blank" >http://dx.doi.org/10.1109/ICDM.2013.127</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ICDM.2013.127" target="_blank" >10.1109/ICDM.2013.127</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Beyond Boolean Matrix Decompositions: Toward Factor Analysis and Dimensionality Reduction of Ordinal Data

  • Original language description

    Boolean matrix factorization (BMF), or decomposition, received a considerable attention in data mining research, both for its direct usefulness in data analysis and its fundamental role in understanding Boolean data. In this paper, we argue that researchshould extend beyond the Boolean case toward more general type of data such as ordinal data. Technically, such extension amounts to replacement of the two-element Boolean algebra utilized in BMF by more general structures, which brings non-trivial challenges. We first present the problem formulation, survey the existing literature, and provide an illustrative example. Second, we present new theorems regarding decompositions of matrices with ordinal data. The theorems helps understand the geometry of decompositions and identify parts of input matrices which are good to focus on when computing factors. Third, we propose two algorithms based on these results along with an experimental evaluation. We conclude the paper with a discussion re

  • Czech name

  • Czech description

Classification

  • Type

    D - Article in proceedings

  • CEP classification

    IN - Informatics

  • OECD FORD branch

Result continuities

  • Project

    <a href="/en/project/GAP103%2F11%2F1456" target="_blank" >GAP103/11/1456: Foundations of Similarity-Based Data Processing</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2013

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Article name in the collection

    Proceedings of 2013 IEEE 13th International Conference on Data Mining

  • ISBN

    978-0-7685-5108-2

  • ISSN

    1550-4786

  • e-ISSN

  • Number of pages

    6

  • Pages from-to

    961-966

  • Publisher name

    IEEE Computer Society Press

  • Place of publication

    Los Alamos

  • Event location

    Dallas

  • Event date

    Dec 7, 2013

  • Type of event by nationality

    WRD - Celosvětová akce

  • UT code for WoS article