Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33149125" target="_blank" >RIV/61989592:15310/14:33149125 - isvavai.cz</a>
Result on the web
<a href="http://www.boundaryvalueproblems.com/content/pdf/1687-2770-2014-118.pdf" target="_blank" >http://www.boundaryvalueproblems.com/content/pdf/1687-2770-2014-118.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/1687-2770-2014-118" target="_blank" >10.1186/1687-2770-2014-118</a>
Alternative languages
Result language
angličtina
Original language name
Existence principle for higher-order nonlinear differential equations with state-dependent impulses via fixed point theorem
Original language description
The paper provides an existence principle for a general boundary value problem of the form sum_{j=0}^{n} a_j(t) u^(j)(t) = h(t,u(t),...,u^(n-1)(t)), a.e. t in [a,b] subset R, l_k(u,u',...,u^(n-1)) = c_k, k = 1,ldots,n, with the state dependent impulsesu^(j)(t+) - u^(j)(t-) = J_{ij}(u(t-),u'(t-),...,u^(n-1)(t-)), where the impulse points t are determined as solutions of the equations t = gamma_i(u(t-),u'(t-),...,u^(n-2)(t-)), i = 1,...,p, j=0,...,n-1. Here, n,p are positive integers, c_1,..., c_n reals, the functions a_j/a_n, j=0,...,n-1, are Lebesgue integrable on [a,b] and h/a_n satisfies the Caratheodory conditions on [a,b]R^n$. The impulse functions J_{ij}, i=1,...,p, j=0,...,n-1, and the barrier functions gamma_i, i = 1,...,p, are continuous onR^n and R^{n-1}, respectively. The functionals l_k, k=1,...,n, are linear and bounded on the space of left-continuous regulated (i.e. having finite one-sided limits at each point) on [a,b] vector functions. Provided the data functions h a
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Boundary Value Problems
ISSN
1687-2770
e-ISSN
—
Volume of the periodical
2014
Issue of the periodical within the volume
118
Country of publishing house
DE - GERMANY
Number of pages
15
Pages from-to
1-15
UT code for WoS article
000347388800003
EID of the result in the Scopus database
—