Impact of Boolean factorization as preprocessing methods for classification of Boolean data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33150657" target="_blank" >RIV/61989592:15310/14:33150657 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10472-014-9414-x" target="_blank" >http://link.springer.com/article/10.1007%2Fs10472-014-9414-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10472-014-9414-x" target="_blank" >10.1007/s10472-014-9414-x</a>
Alternative languages
Result language
angličtina
Original language name
Impact of Boolean factorization as preprocessing methods for classification of Boolean data
Original language description
We explore a utilization of Boolean matrix factorization for data preprocessing in classification of Boolean data. In our previous work, we demonstrated that preprocessing that consists in replacing the original Boolean attributes by factors, i.e. new Boolean attributes obtained from the original ones by Boolean matrix factorization, can improve classification quality. The aim of this paper is to explore the question of how the various Boolean factorization methods that were proposed in the literature impact the quality of classification. In particular, we compare five factorization methods, present experimental results, and outline issues for future research.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Annals of Mathematics and Artificial Intelligence
ISSN
1012-2443
e-ISSN
—
Volume of the periodical
72
Issue of the periodical within the volume
1-2
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
20
Pages from-to
3-22
UT code for WoS article
000342438500002
EID of the result in the Scopus database
—