Observables on quantum structures
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33151022" target="_blank" >RIV/61989592:15310/14:33151022 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0020025513006476" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020025513006476</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2013.09.014" target="_blank" >10.1016/j.ins.2013.09.014</a>
Alternative languages
Result language
angličtina
Original language name
Observables on quantum structures
Original language description
An observable on a quantum structure is any sigma-homomorphism of quantum structures from the Borel sigma-algebra into the quantum structure. We show that our partial information on an observable known only for all intervals of the form (?oo, t) is sufficient to derive the whole information about the observable defined on quantum structures like sigma-MV-algebras, sigma-lattice effect algebras, Boolean sigma-algebras, monotone sigma-complete effect algebras with the Riesz Decomposition Property, the effect algebra of effect operators of a Hilbert space, and systems of functions - effect-tribes.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.20.0051" target="_blank" >EE2.3.20.0051: Algebraic methods in Quantum Logic</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
262
Issue of the periodical within the volume
20.3.2014
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
215-222
UT code for WoS article
000331478800013
EID of the result in the Scopus database
—