On dimensions of vector spaces of conformal Killing forms
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F14%3A33151204" target="_blank" >RIV/61989592:15310/14:33151204 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_29" target="_blank" >http://dx.doi.org/10.1007/978-3-642-55361-5_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-642-55361-5_29" target="_blank" >10.1007/978-3-642-55361-5_29</a>
Alternative languages
Result language
angličtina
Original language name
On dimensions of vector spaces of conformal Killing forms
Original language description
In this article there are found precise upper bounds of dimension of vector spaces of conformal Killing forms, closed and coclosed conformal Killing r-forms on an n-dimensional manifold. It is proved that, in the case of n-dimensional closed Riemannian manifold, the vector space of conformal Killing r-forms is an orthogonal sum of the subspace of Killing forms and of the subspace of exact conformal Killing r-forms. This is a generalization of related result of Tachibana and Kashiwada on pointwise decomposition of conformal Killing r-forms on a Riemannian manifold with constant curvature. It is shown that the following well known proposition may be derived as a consequence of our result: any closed Riemannian manifold having zero Betti number and admitting group of conformal mappings, which is non equal to the group of motions, is conformal equivalent to a hypersphere of Euclidean space.
Czech name
—
Czech description
—
Classification
Type
D - Article in proceedings
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2014
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Article name in the collection
Algebra, Geometry and Mathematical Physics
ISBN
978-3-642-55360-8
ISSN
—
e-ISSN
—
Number of pages
9
Pages from-to
495-507
Publisher name
Springer
Place of publication
Heidelberg
Event location
Mulhouse, France
Event date
Oct 24, 2011
Type of event by nationality
WRD - Celosvětová akce
UT code for WoS article
000347610400029