Applications of Local Algebras of Differentiable Manifolds
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155670" target="_blank" >RIV/61989592:15310/15:33155670 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10958-015-2381-x" target="_blank" >http://link.springer.com/article/10.1007%2Fs10958-015-2381-x</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10958-015-2381-x" target="_blank" >10.1007/s10958-015-2381-x</a>
Alternative languages
Result language
angličtina
Original language name
Applications of Local Algebras of Differentiable Manifolds
Original language description
This paper is devoted to some applications of local algebras in geometry. We recall some properties of free finite-dimensional modules over local algebras of a certain type, so-called A-spaces in the sense of MacDonald, where A denotes the algebra considered. Using these properties, we study bilinear, special symmetric, and symplectic forms on A-spaces and obtain some their invariants. Properties of these spaces are used in the study of projective Klingenberg spaces over the ring A. We present fundamental notions of points and subspaces of projective Klingenberg spaces. We examine the neighborship property of points and homologies. We obtain a criterion of projective equivalence of quadrics on these spaces.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/EE2.3.30.0041" target="_blank" >EE2.3.30.0041: POST-UP II.</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Mathematical Sciences
ISSN
1072-3374
e-ISSN
—
Volume of the periodical
207
Issue of the periodical within the volume
3
Country of publishing house
US - UNITED STATES
Number of pages
27
Pages from-to
485-511
UT code for WoS article
—
EID of the result in the Scopus database
—