On lattices with a smallest set of aggregation functions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155717" target="_blank" >RIV/61989592:15310/15:33155717 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0020025515005277" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0020025515005277</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ins.2015.07.031" target="_blank" >10.1016/j.ins.2015.07.031</a>
Alternative languages
Result language
angličtina
Original language name
On lattices with a smallest set of aggregation functions
Original language description
Given a bounded lattice L with bounds 0 and 1, it is well known that the set Pol(0,1) (L) of all 0, 1-preserving polynomials of L forms a natural subclass of the set C(L) of aggregation functions on L. The main aim of this paper is to characterize all finite lattices L for which these two classes coincide, i.e. when the set C(L) is as small as possible. These lattices are shown to be completely determined by their tolerances, also several sufficient purely lattice-theoretical conditions are presented. In particular, all simple relatively complemented lattices or simple lattices for which the join (meet) of atoms (coatoms) is 1 (0) are of this kind.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GF15-34697L" target="_blank" >GF15-34697L: New perspectives on residuated posets</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Information Sciences
ISSN
0020-0255
e-ISSN
—
Volume of the periodical
325
Issue of the periodical within the volume
DEC
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
8
Pages from-to
316-323
UT code for WoS article
000362380600020
EID of the result in the Scopus database
—