Lexicographic pseudo MV-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155759" target="_blank" >RIV/61989592:15310/15:33155759 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S1570868315000853" target="_blank" >http://www.sciencedirect.com/science/article/pii/S1570868315000853</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jal.2015.10.001" target="_blank" >10.1016/j.jal.2015.10.001</a>
Alternative languages
Result language
angličtina
Original language name
Lexicographic pseudo MV-algebras
Original language description
A lexicographic pseudo MV-algebra is an algebra that is isomorphic to an interval in the lexicographic product of a unital linearly ordered group with an arbitrary e-group. We present conditions when a pseudo MV-algebra is lexicographic. We show that a key condition is the existence of a lexicographic ideal, or equivalently, a case when the algebra can be split into comparable slices indexed by elements of the interval [0,u] of some unital linearly ordered group (H, u). Finally, we show that fixing (H,u), the category of (H, u)-lexicographic pseudo MV-algebras is categorically equivalent to the category of R-groups.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Journal of Applied Logic
ISSN
1570-8683
e-ISSN
—
Volume of the periodical
13
Issue of the periodical within the volume
4
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
17
Pages from-to
825-841
UT code for WoS article
000366072400008
EID of the result in the Scopus database
—