Shells of monotone curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33155870" target="_blank" >RIV/61989592:15310/15:33155870 - isvavai.cz</a>
Result on the web
<a href="http://link.springer.com/article/10.1007%2Fs10587-015-0202-5#/page-1" target="_blank" >http://link.springer.com/article/10.1007%2Fs10587-015-0202-5#/page-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10587-015-0202-5" target="_blank" >10.1007/s10587-015-0202-5</a>
Alternative languages
Result language
angličtina
Original language name
Shells of monotone curves
Original language description
We determine in Rn the form of curves C corresponding to strictly monotone functions as well as the components of affine connections ? for which any image of C under a compact-free group ? of affinities containing the translation group is a geodesic withrespect to ?. Special attention is paid to the case that ? contains many dilatations or that C is a curve in R3. If C is a curve in R3 and ? is the translation group then we calculate not only the components of the curvature and the Weyl tensor but we also decide when ? yields a flat or metrizable space and compute the corresponding metric tensor.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Czechoslovak Mathematical Journal
ISSN
0011-4642
e-ISSN
—
Volume of the periodical
65
Issue of the periodical within the volume
3
Country of publishing house
CZ - CZECH REPUBLIC
Number of pages
23
Pages from-to
677-699
UT code for WoS article
000362883100006
EID of the result in the Scopus database
—