Geodesic mappings and differentiability of metrics, affine and projective connections
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F15%3A33157184" target="_blank" >RIV/61989592:15310/15:33157184 - isvavai.cz</a>
Result on the web
<a href="http://www.doiserbia.nb.rs/img/doi/0354-5180/2015/0354-51801506245H.pdf" target="_blank" >http://www.doiserbia.nb.rs/img/doi/0354-5180/2015/0354-51801506245H.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1506245H" target="_blank" >10.2298/FIL1506245H</a>
Alternative languages
Result language
angličtina
Original language name
Geodesic mappings and differentiability of metrics, affine and projective connections
Original language description
In this paper we study fundamental equations of geodesic mappings of manifolds with affine and projective connection onto (pseudo-) Riemannian manifolds with respect to the smoothness class of these geometric objects. We prove that the natural smoothnessclass of these problems is preserved.
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
BA - General mathematics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GAP201%2F11%2F0356" target="_blank" >GAP201/11/0356: Riemannian, pseudo-Riemannian and affine differential geometry</a><br>
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2015
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat: Algebra, Logic and Discrete Mathematics
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
29
Issue of the periodical within the volume
6
Country of publishing house
CS - SERBIA AND MONTENEGRO
Number of pages
5
Pages from-to
1245-1249
UT code for WoS article
000356615900010
EID of the result in the Scopus database
—