All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Classical and robust orthogonal regression between parts of compositional data

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33159845" target="_blank" >RIV/61989592:15310/16:33159845 - isvavai.cz</a>

  • Result on the web

    <a href="http://dx.doi.org/10.1080/02331888.2016.1162164" target="_blank" >http://dx.doi.org/10.1080/02331888.2016.1162164</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/02331888.2016.1162164" target="_blank" >10.1080/02331888.2016.1162164</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Classical and robust orthogonal regression between parts of compositional data

  • Original language description

    The different parts (variables) of a compositional data set cannot be considered independent from each other, since only the ratios between the parts constitute the relevant information to be analysed. Practically, this information can be included in a system of orthonormal coordinates. For the task of regression of one part on other parts, a specific choice of orthonormal coordinates is proposed which allows for an interpretation of the regression parameters in terms of the original parts. In this context, orthogonal regression is appropriate since all compositional parts - also the explanatory variables - are measured with errors. Besides classical (least-squares based) parameter estimation, also robust estimation based on robust principal component analysis is employed. Statistical inference for the regression parameters is obtained by bootstrap; in the robust version the fast and robust bootstrap procedure is used. The methodology is illustrated with a data set from macroeconomics.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)

  • CEP classification

    BB - Applied statistics, operational research

  • OECD FORD branch

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2016

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Statistics : a journal of theoretical and applied statistics

  • ISSN

    0233-1888

  • e-ISSN

  • Volume of the periodical

    50

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    15

  • Pages from-to

    1261-1275

  • UT code for WoS article

    000385543000005

  • EID of the result in the Scopus database