Variety theorem for algebras with fuzzy orders
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F16%3A33160155" target="_blank" >RIV/61989592:15310/16:33160155 - isvavai.cz</a>
Result on the web
<a href="http://www.sciencedirect.com/science/article/pii/S0165011415005679" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0165011415005679</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2015.11.017" target="_blank" >10.1016/j.fss.2015.11.017</a>
Alternative languages
Result language
angličtina
Original language name
Variety theorem for algebras with fuzzy orders
Original language description
We present generalization of the Bloom variety theorem of ordered algebras in fuzzy setting. Algebras with fuzzy orders consist of sets of functions which are compatible with fuzzy orders. Fuzzy orders are defined on universe sets of algebras using complete residuated lattices as structures of degrees. In this setting, we show that classes of models of fuzzy sets of inequalities are closed under suitably defined formations of subalgebras, homomorphic images, and direct products. Conversely, we prove that classes having these closure properties are definable by fuzzy sets of inequalities
Czech name
—
Czech description
—
Classification
Type
J<sub>x</sub> - Unclassified - Peer-reviewed scientific article (Jimp, Jsc and Jost)
CEP classification
IN - Informatics
OECD FORD branch
—
Result continuities
Project
<a href="/en/project/GA14-11585S" target="_blank" >GA14-11585S: Relational Similarity-Based Databases</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2016
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fuzzy Sets and Systems
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
303
Issue of the periodical within the volume
NOV
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
14
Pages from-to
114-127
UT code for WoS article
000384862600007
EID of the result in the Scopus database
2-s2.0-84949255401