Do We Need Minimal Solutions of Fuzzy Relational Equations in Advance?
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73581833" target="_blank" >RIV/61989592:15310/17:73581833 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1109/TFUZZ.2016.2598860" target="_blank" >http://dx.doi.org/10.1109/TFUZZ.2016.2598860</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TFUZZ.2016.2598860" target="_blank" >10.1109/TFUZZ.2016.2598860</a>
Alternative languages
Result language
angličtina
Original language name
Do We Need Minimal Solutions of Fuzzy Relational Equations in Advance?
Original language description
Minimal solutions play a crucial role in description of all solutions to a fuzzy relational equation. The reason is that all solutions form a convex set with respect to (fuzzy) set inclusion; therefore, having all extremal solutions, we can represent the entire solution set as a union of intervals bounded from above by the greatest solution and from below by the minimal solutions. However, when computing the intervals, we obtain many duplicate solutions. The obvious question is as follows: Is there another way of representing the solution set, for instance, without the need of having all the minimal solutions in advance? We provide the positive answer to this question.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
IEEE Transactions on Fuzzy Systems
ISSN
1063-6706
e-ISSN
—
Volume of the periodical
25
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
8
Pages from-to
1356-1363
UT code for WoS article
000412200500028
EID of the result in the Scopus database
2-s2.0-85032438663