Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73582702" target="_blank" >RIV/61989592:15310/17:73582702 - isvavai.cz</a>
Result on the web
<a href="http://pubs.acs.org/doi/10.1021/acssuschemeng.6b02698" target="_blank" >http://pubs.acs.org/doi/10.1021/acssuschemeng.6b02698</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acssuschemeng.6b02698" target="_blank" >10.1021/acssuschemeng.6b02698</a>
Alternative languages
Result language
angličtina
Original language name
Zero-Valent Iron Nanoparticles Reduce Arsenites and Arsenates to As(0) Firmly Embedded in Core–Shell Superstructure: Challenging Strategy of Arsenic Treatment under Anoxic Conditions
Original language description
Arsenites and arsenates are carcinogenic to humans and are typically removed from contaminated water using various sorbents. However, these treatment methods result in the secondary release of weakly bound As species and require large amounts of sorbents. Here, we introduce a groundbreaking method involving the use of oxidic-shell-free nanoscale zero-valent iron (OSF-nZVI) to treat arsenite/arsenate-polluted underground water. Under anoxic conditions, OSF-nZVI is capable to reduce As(III)/As(V) species to As(0) (up to 65% of total arsenic content). Thus, reduction synergistically contributes to sorption tuning suitably the chemical nature and isoelectric points of As species, thereby enhancing arsenic removal from an anoxic aqueous environment. More importantly, As species are locked between the Fe(0) core and iron(III) oxide outer shell. For comparison, the removal capability of OSF-nZVI is 2 times lower under oxic conditions, due to the complex redox mechanism resulting in exclusive sorption of As(III)/As(V) species onto the surface of oxidized OSF-nZVI particles. The unique strategy to treat arsenites/arsenates by their reduction to zero-valent arsenic with OSF-nZVI was also demonstrated in experiments with real polluted water. Results suggest that "green" reduction and firm immobilization of toxic As species through OSF-nZVI could provide environmentally friendly tool to treat arsenic-polluted underground water, a main source of highly contaminated drinking water worldwide.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10402 - Inorganic and nuclear chemistry
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ACS Sustainable Chemistry & Engineering
ISSN
2168-0485
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
4
Country of publishing house
US - UNITED STATES
Number of pages
12
Pages from-to
3027-3038
UT code for WoS article
000398429700027
EID of the result in the Scopus database
—