All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

The hull-kernel topology on prime ideals in posets

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583213" target="_blank" >RIV/61989592:15310/17:73583213 - isvavai.cz</a>

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1007%2Fs00500-016-2105-2.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00500-016-2105-2.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00500-016-2105-2" target="_blank" >10.1007/s00500-016-2105-2</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    The hull-kernel topology on prime ideals in posets

  • Original language description

    In this paper, we continue our study of prime ideals in posets that was started in Joshi and Mundlik (Cent Eur J Math 11(5):940–955, 2013) and, Erné and Joshi (Discrete Math 338:954–971, 2015). We study the hull-kernel topology on the set of all prime ideals P(Q) , minimal prime ideals Min (Q) and maximal ideals Max (Q) of a poset Q. Then topological properties like compactness, connectedness and separation axioms of P(Q) are studied. Further, we focus on the space of minimal prime ideals Min (Q) of a poset Q. Under the additional assumption that every maximal ideal is prime, the collection of all maximal ideals Max (Q) of a poset Q forms a subspace of P(Q). Finally, we prove a characterization of a space of maximal ideals of a poset to be a normal space.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF15-34697L" target="_blank" >GF15-34697L: New perspectives on residuated posets</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Soft Computing: a fusion of foundations, methodologies and applications

  • ISSN

    1432-7643

  • e-ISSN

  • Volume of the periodical

    21

  • Issue of the periodical within the volume

    7

  • Country of publishing house

    DE - GERMANY

  • Number of pages

    13

  • Pages from-to

    1653-1665

  • UT code for WoS article

    000398731700002

  • EID of the result in the Scopus database

    2-s2.0-84960348542