Positive solutions of a system of fractional functional differential equations with nonlocal boundary conditions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583352" target="_blank" >RIV/61989592:15310/17:73583352 - isvavai.cz</a>
Result on the web
<a href="http://files.ele-math.com/articles/fdc-07-12.pdf" target="_blank" >http://files.ele-math.com/articles/fdc-07-12.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.7153/fdc-2017-07-12" target="_blank" >10.7153/fdc-2017-07-12</a>
Alternative languages
Result language
angličtina
Original language name
Positive solutions of a system of fractional functional differential equations with nonlocal boundary conditions
Original language description
The paper discusses the system of two fractional functional differential equations with Caputo fractional derivatives. By using the Guo-Krasnoselskii fixed point theorem on cones and the nonlinear Leray-Schauder alternative the existence of positive solutions to the system satisfying nonlocal boundary conditions is proved. The boundary conditions are given by linear bounded functionsls. Examples are given to illustrate the results.
Czech name
—
Czech description
—
Classification
Type
J<sub>ost</sub> - Miscellaneous article in a specialist periodical
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Fractional Differential Calculus
ISSN
1847-9677
e-ISSN
—
Volume of the periodical
7
Issue of the periodical within the volume
2
Country of publishing house
HR - CROATIA
Number of pages
18
Pages from-to
"283-"--300
UT code for WoS article
—
EID of the result in the Scopus database
—