When the lexicographic product of two po-groups has the Riesz decomposition property
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73583860" target="_blank" >RIV/61989592:15310/17:73583860 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2Fs00012-017-0447-y.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00012-017-0447-y.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-017-0447-y" target="_blank" >10.1007/s00012-017-0447-y</a>
Alternative languages
Result language
angličtina
Original language name
When the lexicographic product of two po-groups has the Riesz decomposition property
Original language description
We study conditions when a certain type of the Riesz Decomposition Property (RDP for short) holds in the lexicographic product of two po-groups. Defining two important properties of po-groups, we extend known situations showing that the lexicographic product satisfies RDP or even , a stronger type of RDP. We recall that a very strong type of RDP, , entails that the group is lattice ordered. RDP's of the lexicographic products are important for the study of lexicographic pseudo effect algebras, or perfect types of pseudo MV-algebras and pseudo effect algebras, where infinitesimal elements play an important role both for algebras as well as for the first order logic of valid but not provable formulas.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2017
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Algebra Universalis
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
78
Issue of the periodical within the volume
1
Country of publishing house
CH - SWITZERLAND
Number of pages
25
Pages from-to
67-91
UT code for WoS article
000407898700006
EID of the result in the Scopus database
2-s2.0-85019963460