All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Orthomodular Lattices Can Be Converted into Left Residuated L-groupoids

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F17%3A73585134" target="_blank" >RIV/61989592:15310/17:73585134 - isvavai.cz</a>

  • Result on the web

    <a href="http://mat76.mat.uni-miskolc.hu/mnotes/article/1730" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/article/1730</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.18514/MMN.2017.1730" target="_blank" >10.18514/MMN.2017.1730</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Orthomodular Lattices Can Be Converted into Left Residuated L-groupoids

  • Original language description

    We show that every orthomodular lattice can be considered as a left residuated lgroupoid satisfying divisibility, antitony, the double negation law and three more additional conditions expressed in the language of residuated structures. Also conversely, every left residuated l-groupoid satisfying the mentioned conditions can be organized into an orthomodular lattice.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/GF15-34697L" target="_blank" >GF15-34697L: New perspectives on residuated posets</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2017

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Miskolc Mathematical Notes

  • ISSN

    1787-2405

  • e-ISSN

  • Volume of the periodical

    18

  • Issue of the periodical within the volume

    2

  • Country of publishing house

    HU - HUNGARY

  • Number of pages

    5

  • Pages from-to

    685-689

  • UT code for WoS article

    000425348300011

  • EID of the result in the Scopus database