Gaussian intrinsic entanglement for states with partial minimum uncertainty
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73585891" target="_blank" >RIV/61989592:15310/18:73585891 - isvavai.cz</a>
Result on the web
<a href="https://journals.aps.org/pra/pdf/10.1103/PhysRevA.97.012305" target="_blank" >https://journals.aps.org/pra/pdf/10.1103/PhysRevA.97.012305</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevA.97.012305" target="_blank" >10.1103/PhysRevA.97.012305</a>
Alternative languages
Result language
angličtina
Original language name
Gaussian intrinsic entanglement for states with partial minimum uncertainty
Original language description
We develop a recently proposed theory of a quantifier of bipartite Gaussian entanglement called Gaussian intrinsic entanglement (GIE) [L. Mista, Jr. and R. Tatham, Phys. Rev. Lett. 117, 240505 (2016)]. Gaussian intrinsic entanglement provides a compromise between computable and physically meaningful entanglement quantifiers and so far it has been calculated for two-mode Gaussian states including all symmetric partialminimumuncertainty states, weakly mixed asymmetric squeezed thermal states with partial minimum uncertainty, and weakly mixed symmetric squeezed thermal states. We improve the method of derivation of GIE and show that all previously derived formulas for GIE of weakly mixed states in fact hold for states with higher mixedness. In addition, we derive analytical formulas for GIE for several other classes of two-mode Gaussian states with partial minimum uncertainty. Finally, we show that, like for all previously known states, also for all currently considered states the GIE is equal to Gaussian Renyi-2 entanglement of formation. This finding strengthens a conjecture about the equivalence of GIE and Gaussian Renyi-2 entanglement of formation for all bipartite Gaussian states.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10306 - Optics (including laser optics and quantum optics)
Result continuities
Project
—
Continuities
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Physical Review A
ISSN
2469-9926
e-ISSN
—
Volume of the periodical
97
Issue of the periodical within the volume
1
Country of publishing house
US - UNITED STATES
Number of pages
20
Pages from-to
"012305-1"-"012305-20"
UT code for WoS article
000419702700001
EID of the result in the Scopus database
2-s2.0-85042053797