Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589105" target="_blank" >RIV/61989592:15310/18:73589105 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1080/02664763.2017.1410524" target="_blank" >http://dx.doi.org/10.1080/02664763.2017.1410524</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/02664763.2017.1410524" target="_blank" >10.1080/02664763.2017.1410524</a>
Alternative languages
Result language
angličtina
Original language name
Regression imputation with Q-mode clustering for rounded zero replacement in high-dimensional compositional data
Original language description
The logratio methodology is not applicable when rounded zeros occur in compositional data. There are many methods to deal with rounded zeros. However, some methods are not suitable for analyzing data sets with high dimensionality. Recently, related methods have been developed, but they cannot balance the calculation time and accuracy. For further improvement, we propose a method based on regression imputation with Q-mode clustering. This method forms the groups of parts and builds partial least squares regression with these groups using centered logratio coordinates.We also prove that using centered logratio coordinates or isometric logratio coordinates in the response of partial least squares regression have the equivalent results for the replacement of rounded zeros. Simulation study and real example are conducted to analyze the performance of the proposed method. The results show that the proposed method can reduce the calculation time in higher dimensions and improve the quality of results.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10103 - Statistics and probability
Result continuities
Project
—
Continuities
N - Vyzkumna aktivita podporovana z neverejnych zdroju
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
JOURNAL OF APPLIED STATISTICS
ISSN
0266-4763
e-ISSN
—
Volume of the periodical
45
Issue of the periodical within the volume
11
Country of publishing house
GB - UNITED KINGDOM
Number of pages
14
Pages from-to
2067-2080
UT code for WoS article
000436973300009
EID of the result in the Scopus database
2-s2.0-85049522544