All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Compositional regression with functional response

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589345" target="_blank" >RIV/61989592:15310/18:73589345 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.sciencedirect.com/science/article/pii/S0167947318300276" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0167947318300276</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.csda.2018.01.018" target="_blank" >10.1016/j.csda.2018.01.018</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Compositional regression with functional response

  • Original language description

    The problem of performing functional linear regression when the response variable is represented as a probability density function (PDF) is addressed. PDFs are interpreted as functional compositions, which are objects carrying primarily relative information. In this context, the unit integral constraint allows to single out one of the possible representations of a class of equivalent measures. On these bases, a function-on-scalar regression model with distributional response is proposed, by relying on the theory of Bayes Hilbert spaces. The geometry of Bayes spaces allows capturing all the key inherent features of distributional data (e.g., scale invariance, relative scale). A B-spline basis expansion combined with a functional version of the centered log-ratio transformation is utilized for actual computations. For this purpose, a new key result is proved to characterize B-spline representations in Bayes spaces. The potential of the methodological developments is shown on simulated data and a real case study, dealing with metabolomics data. A bootstrap-based study is performed for the uncertainty quantification of the obtained estimates.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10103 - Statistics and probability

Result continuities

  • Project

    <a href="/en/project/GA15-06991S" target="_blank" >GA15-06991S: Functional data analysis and related topics</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    COMPUTATIONAL STATISTICS &amp; DATA ANALYSIS

  • ISSN

    0167-9473

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    JUL

  • Country of publishing house

    NL - THE KINGDOM OF THE NETHERLANDS

  • Number of pages

    20

  • Pages from-to

    66-85

  • UT code for WoS article

    000430147700005

  • EID of the result in the Scopus database

    2-s2.0-85042492763