Photosynthesis in Poor Nutrient Soils, in Compacted Soils, and under Drought
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589779" target="_blank" >RIV/61989592:15310/18:73589779 - isvavai.cz</a>
Result on the web
<a href="http://dx.doi.org/10.1007/978-3-319-93594-2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-93594-2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-93594-2" target="_blank" >10.1007/978-3-319-93594-2</a>
Alternative languages
Result language
angličtina
Original language name
Photosynthesis in Poor Nutrient Soils, in Compacted Soils, and under Drought
Original language description
Plants require the uptake of nutrients (in most cases via roots) and their incorporation into plant organs for growth. In non-woody species, 83% of fresh weight is water, 7% is carbon, 5% is oxygen, with the remaining 5% including hydrogen and such nutrients. In natural ecosystems, availability of nutrients in soils is heterogeneous, and many species often adapt their growth to the amount of nutrients that roots can take up by exploring the available soil volume. In agricultural areas, the lack of some nutrients is frequent. In both cases, plants must also face periods of drought and soil compaction. These environmental stresses are therefore not uncommon in natural ecosystems and crops, and the stressed plants often experience a decrease in photosynthetic CO2 fixation. In this chapter, we review changes observed in photosynthesis in response to nutrient deficiencies, soil compaction, and drought. The current knowledge on photosynthesis in carnivorous plants, as a special case of plant species growing in nutrient poor soils, is also included. Pigment limitations (chlorosis and/or necrosis), stomatal limitations, ultrastructural effects and mesophyll conductance limitations, photochemistry (primary reactions), carboxylation and Calvin-cycle reactions, and carbohydrate metabolism and transport will be discussed. With regard to nutrients, we have focused on the most common nutrition-related stresses in plants, the deficiencies of macro- (nitrogen, phosphorous, and potassium) and micronutrients (iron, manganese, copper, and zinc). Other nutrient deficiencies (or toxicities, both in the cases of essential nutrient excess or heavy metals) are not reviewed here. For other nutrient deficiencies and toxicities, and the role of the above-mentioned, and other nutrients (such as calcium and magnesium) in gas exchange, and as intracellular signal transducers, enzyme activators, and structure and function stabilizers of biological membranes, readers are referred to papers published elsewhere (Marschner H, Mineral nutrition of higher plants. Academic, London, 1995; Cakmak I, Kirkby EA, Physiol Plant 133:692–704, 2008; Morales F, Warren CR, Photosynthetic responses to nutrient deprivation and toxicities. In: Flexas J, Loreto F, Medrano H (eds) Terrestrial photosynthesis in a changing environment: a molecular, physiological and ecological approach. Cambridge University Press, Cambridge, pp 312–330, 2012; Hochmal AK, Schulze S, Trompelt K, Hippler M, Biochim Biophys Acta 1847:993–1003, 2015).
Czech name
—
Czech description
—
Classification
Type
C - Chapter in a specialist book
CEP classification
—
OECD FORD branch
10611 - Plant sciences, botany
Result continuities
Project
Result was created during the realization of more than one project. More information in the Projects tab.
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Book/collection name
The Leaf: A Platform for Performing Photosynthesis
ISBN
978-3-319-93592-8
Number of pages of the result
29
Pages from-to
371-399
Number of pages of the book
575
Publisher name
Springer
Place of publication
Cham
UT code for WoS chapter
—