Riesz Space-Valued States on Pseudo MV-algebras
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73589844" target="_blank" >RIV/61989592:15310/18:73589844 - isvavai.cz</a>
Result on the web
—
DOI - Digital Object Identifier
—
Alternative languages
Result language
angličtina
Original language name
Riesz Space-Valued States on Pseudo MV-algebras
Original language description
We introduce Riesz space-valued states, called (R, 1(R))-states, on a pseudo MV-algebra, where R is a Riesz space with a fixed strong unit 1(R). Pseudo MV-algebras are a non-commutative generalization of MV-algebras. Such a Riesz space-valued state is a generalization of usual states on MV-algebras. Any (R, 1(R))-state is an additive mapping preserving a partial addition in pseudo MV-algebras. We introduce (R, 1(R))-state-morphisms and extremal (R, 1(R))-states, and we study relations between them. We study metrical completion of unital l-groups with respect to an (R, 1(R))-state. If the unital Riesz space is Dedekind complete, we study when the space of (R, 1(R))-states is a Choquet simplex or even a Bauer simplex.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
The IfCoLog Journal of Logics and their Applications
ISSN
2055-3706
e-ISSN
—
Volume of the periodical
5
Issue of the periodical within the volume
8
Country of publishing house
GB - UNITED KINGDOM
Number of pages
42
Pages from-to
1723-1764
UT code for WoS article
000449063900006
EID of the result in the Scopus database
—