On the structure theory of Lukasiewicz near semirings
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590047" target="_blank" >RIV/61989592:15310/18:73590047 - isvavai.cz</a>
Result on the web
<a href="https://academic.oup.com/jigpal/article/26/1/14/4210132" target="_blank" >https://academic.oup.com/jigpal/article/26/1/14/4210132</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1093/jigpal/jzx044" target="_blank" >10.1093/jigpal/jzx044</a>
Alternative languages
Result language
angličtina
Original language name
On the structure theory of Lukasiewicz near semirings
Original language description
Lukasiewicz near semirings form a counterpart of MV-algebras. We describe the variety of these near semirings and characterize their ideals. We derive Cantor-Berstein theorem for the variety of involutive idempotent near semirings.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GF15-34697L" target="_blank" >GF15-34697L: New perspectives on residuated posets</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
LOGIC JOURNAL OF THE IGPL
ISSN
1367-0751
e-ISSN
—
Volume of the periodical
26
Issue of the periodical within the volume
1
Country of publishing house
GB - UNITED KINGDOM
Number of pages
15
Pages from-to
14-28
UT code for WoS article
000428115300002
EID of the result in the Scopus database
2-s2.0-85044671111