All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590123" target="_blank" >RIV/61989592:15310/18:73590123 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.nature.com/articles/s41598-018-31638-5" target="_blank" >https://www.nature.com/articles/s41598-018-31638-5</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1038/s41598-018-31638-5" target="_blank" >10.1038/s41598-018-31638-5</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Singlet oxygen imaging using fluorescent probe Singlet Oxygen Sensor Green in photosynthetic organisms

  • Original language description

    Formation of singlet oxygen (1O2) was reported to accompany light stress in plants, contributing to cell signaling or oxidative damage. So far, Singlet Oxygen Sensor Green (SOSG) has been the only commercialized fluorescent probe for 1O2 imaging though it suffers from several limitations (unequal penetration and photosensitization) that need to be carefully considered to avoid misinterpretation of the analysed data. Herein, we present results of a comprehensive study focused on the appropriateness of SOSG for 1O2 imaging in three model photosynthetic organisms, unicellular cyanobacteria Synechocystis sp. PCC 6803, unicellular green alga Chlamydomonas reinhardtii and higher plant Arabidopsis thaliana. Penetration of SOSG differs in both unicellular organisms; while it is rather convenient for Chlamydomonas it is restricted by the presence of mucoid sheath of Synechocystis, which penetrability might be improved by mild heating. In Arabidopsis, SOSG penetration is limited due to tissue complexity which can be increased by pressure infiltration using a shut syringe. Photosensitization of SOSG and SOSG endoperoxide formed by its interaction with 1O2 might be prevented by illumination of samples by a red light. When measured under controlled conditions given above, SOSG might serve as specific probe for detection of intracellular 1O2 formation in photosynthetic organisms.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10610 - Biophysics

Result continuities

  • Project

    <a href="/en/project/LO1204" target="_blank" >LO1204: Sustainable development of research in the Centre of the Region Haná</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Scientific Reports

  • ISSN

    2045-2322

  • e-ISSN

  • Volume of the periodical

    8

  • Issue of the periodical within the volume

    SEP

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    13

  • Pages from-to

    "13685-1"-"13685-13"

  • UT code for WoS article

    000444377500005

  • EID of the result in the Scopus database

    2-s2.0-85053243356