Hesitant L-Fuzzy Sets
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590132" target="_blank" >RIV/61989592:15310/18:73590132 - isvavai.cz</a>
Result on the web
<a href="https://onlinelibrary.wiley.com/doi/full/10.1002/int.21910" target="_blank" >https://onlinelibrary.wiley.com/doi/full/10.1002/int.21910</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/int.21910" target="_blank" >10.1002/int.21910</a>
Alternative languages
Result language
angličtina
Original language name
Hesitant L-Fuzzy Sets
Original language description
The hesitant fuzzy sets are a new efficient mathematical approach to study imprecise, uncertain, or incomplete knowledge. This paper focuses to extend this approach on a lattice and shows that two large application concepts of the fuzzy set theory namely resolution identity and representation theorem are true under this extended definition.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS
ISSN
0884-8173
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
5
Country of publishing house
US - UNITED STATES
Number of pages
16
Pages from-to
1027-1042
UT code for WoS article
000428795300006
EID of the result in the Scopus database
2-s2.0-85019684566