All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Conformal mappings of Riemannian spaces onto Ricci symmetric spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73590251" target="_blank" >RIV/61989592:15310/18:73590251 - isvavai.cz</a>

  • Alternative codes found

    RIV/00216305:26110/18:PU128169

  • Result on the web

    <a href="https://link.springer.com/content/pdf/10.1134%2FS0001434618010315.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1134%2FS0001434618010315.pdf</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1134/S0001434618010315" target="_blank" >10.1134/S0001434618010315</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Conformal mappings of Riemannian spaces onto Ricci symmetric spaces

  • Original language description

    In the following paper we study the conformal mappings between Riemannian and Ricci symmetric spaces.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

    <a href="/en/project/LO1408" target="_blank" >LO1408: AdMaS UP – Advanced Building Materials, Structures and Technologies</a><br>

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    MATHEMATICAL NOTES

  • ISSN

    0001-4346

  • e-ISSN

  • Volume of the periodical

    103

  • Issue of the periodical within the volume

    1-2

  • Country of publishing house

    RU - RUSSIAN FEDERATION

  • Number of pages

    4

  • Pages from-to

    304-307

  • UT code for WoS article

    000427616800031

  • EID of the result in the Scopus database

    2-s2.0-85043768542