All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

RNA nanopatterning on graphene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73591238" target="_blank" >RIV/61989592:15310/18:73591238 - isvavai.cz</a>

  • Result on the web

    <a href="https://iopscience.iop.org/article/10.1088/2053-1583/aabdf7/meta" target="_blank" >https://iopscience.iop.org/article/10.1088/2053-1583/aabdf7/meta</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1088/2053-1583/aabdf7" target="_blank" >10.1088/2053-1583/aabdf7</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    RNA nanopatterning on graphene

  • Original language description

    Graphene-based materials enable the sensing of diverse biomolecules using experimental approaches based on electrochemistry, spectroscopy, or other methods. Although basic sensing was achieved, it had until now not been possible to understand and control biomolecules&apos; structural and morphological organization on graphene surfaces (i.e. their stacking, folding/unfolding, self-assembly, and nano-patterning). Here we present the insight into structural and morphological organization of biomolecules on graphene in water, using an RNA hairpin as a model system. We show that the key parameters governing the RNA&apos;s behavior on the graphene surface are the number of graphene layers, RNA concentration, and temperature. At high concentrations, the RNA forms a film on the graphene surface with entrapped nanobubbles. The density and the size of the bubbles depend on the number of graphene layers. At lower concentrations, unfolded RNA stacks on the graphene and forms molecular clusters on the surface. Such a control over the conformational behavior of interacting biomolecules at graphene/water interfaces would facilitate new applications of graphene derivatives in biotechnology and biomedicine.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    Result was created during the realization of more than one project. More information in the Projects tab.

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    2D Materials

  • ISSN

    2053-1583

  • e-ISSN

  • Volume of the periodical

    5

  • Issue of the periodical within the volume

    3

  • Country of publishing house

    GB - UNITED KINGDOM

  • Number of pages

    10

  • Pages from-to

    "031006-1"-"031006-10"

  • UT code for WoS article

    000431058200001

  • EID of the result in the Scopus database

    2-s2.0-85049998625