The effect of hydration number on the interfacial transport of sodium ions
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73591659" target="_blank" >RIV/61989592:15310/18:73591659 - isvavai.cz</a>
Alternative codes found
RIV/68378271:_____/18:00491035
Result on the web
<a href="https://www.nature.com/articles/s41586-018-0122-2.pdf" target="_blank" >https://www.nature.com/articles/s41586-018-0122-2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1038/s41586-018-0122-2" target="_blank" >10.1038/s41586-018-0122-2</a>
Alternative languages
Result language
angličtina
Original language name
The effect of hydration number on the interfacial transport of sodium ions
Original language description
Ion hydration and transport at interfaces are relevant to a wide range of applied fields and natural processes(1-5). Interfacial effects are particularly profound in confined geometries such as nanometre-sized channels(6-8), where the mechanisms of ion transport in bulk solutions may not apply(9,10). To correlate atomic structure with the transport properties of hydrated ions, both the interfacial inhomogeneity and the complex competing interactions among ions, water and surfaces require detailed molecular-level characterization. Here we constructed individual sodium ion (Na+) hydrates on a NaCl(001) surface by progressively attaching single water molecules (one to five) to the Na+ ion using a combined scanning tunnelling microscopy and noncontact atomic force microscopy system. We found that the Na+ ion hydrated with three water molecules diffuses orders of magnitude more quickly than other ion hydrates. Ab initio calculations revealed that such high ion mobility arises from the existence of a metastable state, in which the three water molecules around the Na+ ion can rotate collectively with a rather small energy barrier. This scenario would apply even at room temperature according to our classical molecular dynamics simulations. Our work suggests that anomalously high diffusion rates for specific hydration numbers of ions are generally determined by the degree of symmetry match between the hydrates and the surface lattice.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10403 - Physical chemistry
Result continuities
Project
<a href="/en/project/GA18-09914S" target="_blank" >GA18-09914S: Formation of covalent molecular complexes on surfaces driven by light induced chemical reactions</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
NATURE
ISSN
0028-0836
e-ISSN
—
Volume of the periodical
557
Issue of the periodical within the volume
7707
Country of publishing house
GB - UNITED KINGDOM
Number of pages
7
Pages from-to
—
UT code for WoS article
000433412900049
EID of the result in the Scopus database
2-s2.0-85048275808