Kites and residuated lattices
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73592039" target="_blank" >RIV/61989592:15310/18:73592039 - isvavai.cz</a>
Result on the web
<a href="https://link.springer.com/content/pdf/10.1007%2Fs00012-018-0564-2.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs00012-018-0564-2.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00012-018-0564-2" target="_blank" >10.1007/s00012-018-0564-2</a>
Alternative languages
Result language
angličtina
Original language name
Kites and residuated lattices
Original language description
We investigate a construction of an integral residuated lattice starting from an integral residuated lattice and two sets with an injective mapping from one set into the second one. The resulting algebra has a shape of a Chinese cascade kite, therefore, we call this algebra simply a kite. We describe subdirectly irreducible kites and we classify them. We show that the variety of integral residuated lattices generated by kites is generated by all finite-dimensional kites. In particular, we describe some homomorphisms among kites.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA15-15286S" target="_blank" >GA15-15286S: Algebraic, many-valued and quantum structures for uncertainty modelling</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2018
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
ALGEBRA UNIVERSALIS
ISSN
0002-5240
e-ISSN
—
Volume of the periodical
79
Issue of the periodical within the volume
4
Country of publishing house
CH - SWITZERLAND
Number of pages
26
Pages from-to
"UNSP 83-1"-"UNSP 83-26"
UT code for WoS article
000450070700001
EID of the result in the Scopus database
2-s2.0-85056393952