All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F18%3A73592280" target="_blank" >RIV/61989592:15310/18:73592280 - isvavai.cz</a>

  • Result on the web

    <a href="https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007177" target="_blank" >https://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1007177</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1371/journal.pgen.1007177" target="_blank" >10.1371/journal.pgen.1007177</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    WRKY23 is a component of the transcriptional network mediating auxin feedback on PIN polarity

  • Original language description

    Auxin is unique among plant hormones due to its directional transport that is mediated by the polarly distributed PIN auxin transporters at the plasma membrane. The canalization hypothesis proposes that the auxin feedback on its polar flow is a crucial, plant-specific mechanism mediating multiple self-organizing developmental processes. Here, we used the auxin effect on the PIN polar localization in Arabidopsis thaliana roots as a proxy for the auxin feedback on the PIN polarity during canalization. We performed microarray experiments to find regulators of this process that act downstream of auxin. We identified genes that were transcriptionally regulated by auxin in an AXR3/IAA17-and ARF7/ARF19-dependent manner. Besides the known components of the PIN polarity, such as PID and PIP5K kinases, a number of potential new regulators were detected, among which the WRKY23 transcription factor, which was characterized in more detail. Gain-and loss-of-function mutants confirmed a role for WRKY23 in mediating the auxin effect on the PIN polarity. Accordingly, processes requiring auxin-mediated PIN polarity rearrangements, such as vascular tissue development during leaf venation, showed a higher WRKY23 expression and required the WRKY23 activity. Our results provide initial insights into the auxin transcriptional network acting upstream of PIN polarization and, potentially, canalization-mediated plant development.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10603 - Genetics and heredity (medical genetics to be 3)

Result continuities

  • Project

  • Continuities

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Others

  • Publication year

    2018

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    PLoS Genetics

  • ISSN

    1553-7404

  • e-ISSN

  • Volume of the periodical

    14

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    18

  • Pages from-to

    "e1007177-1"-"e1007177-18"

  • UT code for WoS article

    000423718600034

  • EID of the result in the Scopus database

    2-s2.0-85041652746