A reduction theorem to compute fixpoints of fuzzy closure operators
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73595296" target="_blank" >RIV/61989592:15310/19:73595296 - isvavai.cz</a>
Result on the web
<a href="https://www.sciencedirect.com/science/article/pii/S0165011418302914" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165011418302914</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.fss.2018.05.0150165" target="_blank" >10.1016/j.fss.2018.05.0150165</a>
Alternative languages
Result language
angličtina
Original language name
A reduction theorem to compute fixpoints of fuzzy closure operators
Original language description
We present a reduction theorem which relates sets of fixpoints of fuzzy closure operators to sets of fixpoints of ordinary closure operators. As a result we obtain a method to compute sets of fixpoints of fuzzy closure operators by algorithms available for ordinary operators. We also provide explicit descriptions of selected algorithms which result from the presented approach.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Result continuities
Project
<a href="/en/project/GA15-17899S" target="_blank" >GA15-17899S: Decompositions of Matrices with Boolean and Ordinal Data: Theory and Algorithms</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
FUZZY SETS AND SYSTEMS
ISSN
0165-0114
e-ISSN
—
Volume of the periodical
369
Issue of the periodical within the volume
AUG
Country of publishing house
NL - THE KINGDOM OF THE NETHERLANDS
Number of pages
13
Pages from-to
132-144
UT code for WoS article
000468735500009
EID of the result in the Scopus database
2-s2.0-85047900218