Multiple Solution of a Dirichlet Problem in One-dimensional billiard space
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73596589" target="_blank" >RIV/61989592:15310/19:73596589 - isvavai.cz</a>
Result on the web
<a href="http://mat76.mat.uni-miskolc.hu/mnotes/download_article/2407.pdf" target="_blank" >http://mat76.mat.uni-miskolc.hu/mnotes/download_article/2407.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.18514/MMN.2019.2047" target="_blank" >10.18514/MMN.2019.2047</a>
Alternative languages
Result language
angličtina
Original language name
Multiple Solution of a Dirichlet Problem in One-dimensional billiard space
Original language description
The paper gives multiplicity results for the impulsive boundary value problem of the second order with impulses at variable times. This problem can be understood as a problem in one-dimensional billiard space and it is also a generalization of oscillator with obstacles from below and from above and absolutely elastic impacts. A simple condition for the existence of solution with exact number of impacts is given, as well as the multiplicity result. The results are obtained by a transformation into problem without impulses (without impacts) and using Schauder fixed point theorem.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
<a href="/en/project/GA14-06958S" target="_blank" >GA14-06958S: Singularities and impulses in boundary value problems for nonlinear ordinary differential equations</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Miskolc Mathematical Notes
ISSN
1787-2405
e-ISSN
—
Volume of the periodical
20
Issue of the periodical within the volume
2
Country of publishing house
HU - HUNGARY
Number of pages
12
Pages from-to
"1261–1272"
UT code for WoS article
000504461100047
EID of the result in the Scopus database
2-s2.0-85077714317