About almost geodesic curves
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597296" target="_blank" >RIV/61989592:15310/19:73597296 - isvavai.cz</a>
Result on the web
<a href="http://www.doiserbia.nb.rs/img/doi/0354-5180/2019/0354-51801904013B.pdf" target="_blank" >http://www.doiserbia.nb.rs/img/doi/0354-5180/2019/0354-51801904013B.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.2298/FIL1904013B" target="_blank" >10.2298/FIL1904013B</a>
Alternative languages
Result language
angličtina
Original language name
About almost geodesic curves
Original language description
We determine in Rn the form of curves C for which also any image under an (n-1)-dimensional algebraic torus is an almost geodesic with respect to an affine connection r with constant coefficients and calculate the components of connection.
Czech name
—
Czech description
—
Classification
Type
J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database
CEP classification
—
OECD FORD branch
10101 - Pure mathematics
Result continuities
Project
—
Continuities
S - Specificky vyzkum na vysokych skolach
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
Filomat
ISSN
0354-5180
e-ISSN
—
Volume of the periodical
33
Issue of the periodical within the volume
4
Country of publishing house
RS - THE REPUBLIC OF SERBIA
Number of pages
6
Pages from-to
"1013–1018"
UT code for WoS article
000496191800002
EID of the result in the Scopus database
2-s2.0-85078225157