All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

On geodesic bifurcations of product spaces

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597313" target="_blank" >RIV/61989592:15310/19:73597313 - isvavai.cz</a>

  • Result on the web

    <a href="https://obd.upol.cz/id_publ/333177199" target="_blank" >https://obd.upol.cz/id_publ/333177199</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s10958-019-04290-1" target="_blank" >10.1007/s10958-019-04290-1</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    On geodesic bifurcations of product spaces

  • Original language description

    The bifurcation is described as a situation where there exist at least two different geodesics going through the given point in the given direction. In the previous works, the examples of local and closed bifurcations are constructed. This paper is devoted to the further study of these bifurcations. We construct an example of n-dimensional (pseudo-) Riemannian and Kählerian spaces which are product ones that admit a local bifurcation of geodesics and also a closed geodesic.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database

  • CEP classification

  • OECD FORD branch

    10101 - Pure mathematics

Result continuities

  • Project

  • Continuities

    S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Mathematical Sciences

  • ISSN

    1072-3374

  • e-ISSN

  • Volume of the periodical

    239

  • Issue of the periodical within the volume

    1

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    6

  • Pages from-to

    86-91

  • UT code for WoS article

  • EID of the result in the Scopus database

    2-s2.0-85064905213