All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73597468" target="_blank" >RIV/61989592:15310/19:73597468 - isvavai.cz</a>

  • Result on the web

    <a href="https://pubs.acs.org/doi/10.1021/acs.jpcc.9b02163" target="_blank" >https://pubs.acs.org/doi/10.1021/acs.jpcc.9b02163</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acs.jpcc.9b02163" target="_blank" >10.1021/acs.jpcc.9b02163</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Spectroscopic Fingerprints of Graphitic, Pyrrolic, Pyridinic, and Chemisorbed Nitrogen in N-Doped Graphene

  • Original language description

    Doping and functionalization of graphene significantly modulate its properties and extend its application potential. Detailed and accurate chemical characterization of the final material is critical for understanding its properties and reliable design of new graphene derivatives. Spectroscopic methods commonly used for this purpose include Raman, Fourier transform infrared (IR), and X-ray photoelectron spectroscopy (XPS). However, the correct interpretation of observed bands is sometimes hampered by ambiguities when assigning measured binding energies or IR/Raman peaks to specific atomic structures. N-doped graphene has many potential applications but can contain several different chemical forms of nitrogen whose relative abundance strongly affects the doped material&apos;s properties. We present clear spectroscopic fingerprints of the various chemical forms of nitrogen that can occur in N-doped/functionalized graphene to facilitate the identification and quantification of the different forms of N present in experimentally prepared samples. The calculated XPS binding energies of the N 1s state for graphitic, pyrrolic, pyridinic, and chemisorbed nitrogen in N-doped graphene are 401.5, 399.7, 397.9, and 396.6 eV, respectively, and hydrogenation of pyridinic N shifts its peak to 400.5 eV.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10403 - Physical chemistry

Result continuities

  • Project

    <a href="/en/project/EF16_019%2F0000754" target="_blank" >EF16_019/0000754: Nanotechnologies for Future</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Others

  • Publication year

    2019

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Journal of Physical Chemistry C

  • ISSN

    1932-7447

  • e-ISSN

  • Volume of the periodical

    123

  • Issue of the periodical within the volume

    16

  • Country of publishing house

    US - UNITED STATES

  • Number of pages

    8

  • Pages from-to

    10695-10702

  • UT code for WoS article

    000466053600061

  • EID of the result in the Scopus database

    2-s2.0-85065103233