Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel
The result's identifiers
Result code in IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F19%3A73602396" target="_blank" >RIV/61989592:15310/19:73602396 - isvavai.cz</a>
Result on the web
<a href="https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219274" target="_blank" >https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0219274</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1371/journal.pone.0219274" target="_blank" >10.1371/journal.pone.0219274</a>
Alternative languages
Result language
angličtina
Original language name
Genome-wide association mapping of leaf mass traits in a Vietnamese rice landrace panel
Original language description
Leaf traits are often strongly correlated with yield, which poses a major challenge in rice breeding. In the present study, using a panel of Vietnamese rice landraces genotyped with 21,623 single-nucleotide polymorphism markers, a genome-wide association study (GWAS) was conducted for several leaf traits during the vegetative stage. Vietnamese land races are often poorly represented in panels used for GWAS, even though they are adapted to contrasting agrosystems and can contain original, valuable genetic determinants. A panel of 180 rice varieties was grown in pots for four weeks with three replicates under nethouse conditions. Different leaf traits were measured on the second fully expanded leaf of the main tiller, which often plays a major role in determining the photosynthetic capacity of the plant. The leaf fresh weight, turgid weight and dry weight were measured; then, from these measurements, the relative tissue weight and leaf dry matter percentage were computed. The leaf dry matter percentage can be considered a proxy for the photosynthetic efficiency per unit leaf area, which contributes to yield. By a GWAS, thirteen QTLs associated with these leaf traits were identified. Eleven QTLs were identified for fresh weight, eleven for turgid weight, one for dry weight, one for relative tissue weight and one for leaf dry matter percentage. Eleven QTLs presented associations with several traits, suggesting that these traits share common genetic determinants, while one QTL was specific to leaf dry matter percentage and one QTL was specific to relative tissue weight. Interestingly, some of these QTLs colocalize with leaf- or yield-related QTLs previously identified using other material. Several genes within these QTLs with a known function in leaf development or physiology are reviewed.
Czech name
—
Czech description
—
Classification
Type
J<sub>SC</sub> - Article in a specialist periodical, which is included in the SCOPUS database
CEP classification
—
OECD FORD branch
10608 - Biochemistry and molecular biology
Result continuities
Project
<a href="/en/project/EF16_019%2F0000827" target="_blank" >EF16_019/0000827: Plants as a tool for sustainable global development</a><br>
Continuities
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Others
Publication year
2019
Confidentiality
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Data specific for result type
Name of the periodical
PLoS One
ISSN
1932-6203
e-ISSN
—
Volume of the periodical
14
Issue of the periodical within the volume
7
Country of publishing house
US - UNITED STATES
Number of pages
18
Pages from-to
"e0219274-1"-"e0219274-18"
UT code for WoS article
000484939800025
EID of the result in the Scopus database
2-s2.0-85069324431