All

What are you looking for?

All
Projects
Results
Organizations

Quick search

  • Projects supported by TA ČR
  • Excellent projects
  • Projects with the highest public support
  • Current projects

Smart search

  • That is how I find a specific +word
  • That is how I leave the -word out of the results
  • “That is how I can find the whole phrase”

Multi-Leg TiO(2)Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance

The result's identifiers

  • Result code in IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989592%3A15310%2F20%3A73601313" target="_blank" >RIV/61989592:15310/20:73601313 - isvavai.cz</a>

  • Result on the web

    <a href="https://www.mdpi.com/2073-4344/10/6/717/htm" target="_blank" >https://www.mdpi.com/2073-4344/10/6/717/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/catal10060717" target="_blank" >10.3390/catal10060717</a>

Alternative languages

  • Result language

    angličtina

  • Original language name

    Multi-Leg TiO(2)Nanotube Photoelectrodes Modified by Platinized Cyanographene with Enhanced Photoelectrochemical Performance

  • Original language description

    Highly ordered multi-leg TiO(2)nanotubes (MLTNTs) functionalized with platinized cyanographene are proposed as a hybrid photoelectrode for enhanced photoelectrochemical water splitting. The platinized cyanographene and cyanographene/MLTNTs composite yielded photocurrent densities 1.66 and 1.25 times higher than those of the pristine MLTNTs nanotubes, respectively. Open circuit V(OC)decay (V-OCD), electrochemical impedance spectroscopy (EIS), and intensity-modulated photocurrent spectroscopy (IMPS) analyses were performed to study the recombination rate, charge transfer characteristics, and transfer time of photogenerated electrons, respectively. According to the V(OCD)and IMPS results, the addition of (platinized) cynographene decreased the recombination rate and the transfer time of photogenerated electrons by one order of magnitude. Furthermore, EIS results showed that the (platinized) cyanographene MLTNTs composite has the lowest charge transfer resistance and therefore the highest photoelectrochemical performance.

  • Czech name

  • Czech description

Classification

  • Type

    J<sub>imp</sub> - Article in a specialist periodical, which is included in the Web of Science database

  • CEP classification

  • OECD FORD branch

    10405 - Electrochemistry (dry cells, batteries, fuel cells, corrosion metals, electrolysis)

Result continuities

  • Project

    <a href="/en/project/EF15_003%2F0000416" target="_blank" >EF15_003/0000416: Advanced Hybrid Nanostructures for Renewable Energy Applications</a><br>

  • Continuities

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Others

  • Publication year

    2020

  • Confidentiality

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Data specific for result type

  • Name of the periodical

    Catalysts

  • ISSN

    2073-4344

  • e-ISSN

  • Volume of the periodical

    10

  • Issue of the periodical within the volume

    6

  • Country of publishing house

    CH - SWITZERLAND

  • Number of pages

    15

  • Pages from-to

    "717-1"-"717-15"

  • UT code for WoS article

    000554583500001

  • EID of the result in the Scopus database

    2-s2.0-85089590372